285 research outputs found

    Extrapolation of Airborne Polarimetric and Interferometric SAR Data for Validation of Bio-Geo-Retrieval Algorithms for Future Spaceborne SAR Missions

    Get PDF
    Spaceborne SAR system concepts and mission design is often based on algorithms developed and the experience gathered from airborne SAR experiments and associated dedicated campaigns. However, airborne SAR systems have better performance parameters than their future space-borne counterparts as their design is not impacted by mass, power, and storage constraints. This paper describes a methodology to extrapolate spaceborne quality SAR image products from long wavelength airborne polarimetric SAR data which were acquired especially for the development and validation of bio/geo-retrieval algorithms in forested regions. For this purpose not only system (sensor) related parameters are altered, but also those relating to the propagation path (ionosphere) and to temporal decorrelation

    Analysis Methods of Errors (Motion and Atmospheric) in Synthetic Aperture Radar (SAR) Images

    Get PDF
    A method to allow the analysis of the effects of motion and atmospheric errors in SAR images is here presented. The objective of the method is to allow the visualization of the effects of motion errors and atmospheric artefacts on the processed (focused) SAR image. The method is intended to allow the analysis of the interaction of motion and atmospheric errors with the adopted SAR processing procedure and motion compensation algorithms. In this article the analysis method has been applied and tested to a C-Band E-SAR (DLR airborne SAR system) data set where we see that the effects of linear and non-linear phase errors observed are in agreement with the theory

    Digital Beamforming and Traffic Monitoring Using the new FSAR System of DLR

    Get PDF
    In November 2006 the first X-band test flight of DLR’s new FSAR system has been performed successfully and in February 2007 the first flight campaign has been conducted for acquiring experimental multi-channel data of controlled ground moving targets. In the paper the performed experiments and the used setup of the FSAR X-band section are described and preliminary results in the field of ground moving target indication and digital beamforming are presented

    Sentinel-1 Imaging Performance Verification with TerraSAR-X

    Get PDF
    This paper presents dedicated analyses of TerraSAR-X data with respect to the Sentinel-1 TOPS imaging mode. First, the analysis of Doppler centroid behaviour for high azimuth steering angles, as occurs in TOPS imaging, is investigated followed by the analysis and compensation of residual scalloping. Finally, the Flexible-Dynamic BAQ (FD-BAQ) raw data compression algorithm is investigated for the first time with real TerraSAR-X data and its performance is compared to state-of-the-art BAQ algorithms. The presented analyses demonstrate the improvements of the new TOPS imaging mode as well as the new FD-BAQ data compression algorithm for SAR image quality in general and in particular for Sentinel-1

    Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling

    Get PDF
    This paper presents an efficient phase preserving processor for the focusing of data acquired in sliding spotlight and TOPS (Terrain Observation by Progressive Scans) imaging modes. They share in common a linear variation of the Doppler centroid along the azimuth dimension, which is due to a steering of the antenna (either mechanically or electronically) throughout the data take. Existing approaches for the azimuth processing can become inefficient due to the additional processing to overcome the folding in the focused domain. In this paper a new azimuth scaling approach is presented to perform the azimuth processing, whose kernel is exactly the same for sliding spotlight and TOPS modes. The possibility to use the proposed approach to process ScanSAR data, as well as a discussion concerning staring spotlight, are also included. Simulations with point-targets and real data acquired by TerraSAR-X in sliding spotlight and TOPS modes are used to validate the developed algorithm

    Scalloping Correction in TOPS Imaging Mode SAR Data

    Get PDF
    This paper presents an investigation on scalloping correction in the TOPS imaging mode for SAR systems with electronically steered phased array antennas. A theoretical simulation of the scalloping is performed and two correction methods are introduced. The simulation is based on a general cardinal sine (sinc) antenna model as well as on the TerraSAR-X antenna model. Real TerraSAR-X data acquired over rainforest are used for demonstration and verification of the scalloping simulation and correction. Furthermore a calibration approach taking into account the special TOPS imaging mode properties is introduced

    Interferometric SAR signal analysis in the presence of squint

    Get PDF
    This paper develops an analysis of the SAR impulse response function from the interferometric point of view, with the intention of studying its phase behavior in the presence of high squint angle values. It will be pointed out that in this case, a phase ramp is present in the range direction, which, in combination with a certain degree of misregistration between the two images induces an offset in the generated interferometric phase. This behavior, if not compensated, imposes strong limits on the performance of the interferometric techniques in a squinted case, especially for airborne SAR systems. The article proposes two new techniques, which are appropriate to correct the phase bias coming from this source. The first one is based on a modification of the azimuth compression filter, which cancels the phase ramp of the range impulse response function for one specific squint value. In case the SAR processing is performed with variable squint over range, the authors propose a second method oriented to estimating the expected misregistration and thus, the phase bias by means of an iterative approach. Simulated data as well as real corner reflector responses are used to show that the correct topography can be recovered precisely even in the presence of phase bias coming from the squinted geometry.Peer Reviewe

    Resource-Constrained Optimizations For Synthetic Aperture Radar On-Board Image Processing

    Get PDF
    Synthetic Aperture Radar (SAR) can be used to create realistic and high-resolution 2D or 3D reconstructions of landscapes. The data capture is typically deployed using radar instruments in specially equipped, low flying planes, resulting in a large amount of raw data, which needs to be processed for image reconstruction. However, due to limited on-board processing capacities on the plane (power, size, weight, cooling, communication bandwidth to ground stations, etc.) and the need to capture many images during a single flight, the raw data must be processed on-board and then sent to the ground station efficiently as image products. In this paper we describe the processing architecture of the digital beamforming SAR (DBFSAR) of the German Areaospace Center (DLR) and the special steps that had to be taken to enable the on-board processing. We explain the required software optimizations and under which conditions their integration in the SAR imaging process leads to (near) real-time capability. We further describe the lessons learned in our work and discuss how they can be applied to other processing scenarios with limited resource availability

    GeoWAM-LB: Neue Geodaten zur Verbesserung des Wassermanagements tidebeeinflusster KĂĽstenbereiche - Langeoog und Baltrum - F-SAR Datenerfassung und Produktbeschreibung

    Get PDF
    NLWKN und DLR haben im Zeitraum 2019-2022 im Rahmen des mFund-Verbundprojektes GeoWAM die Kartierung trockenfallender Watt- und Vorlandbereiche mittels flugzeuggestĂĽtzter SAR Interferometrie untersucht und dabei multi-temporale Daten der Testgebiete Medemrinne an der Elbe und Otzumer Balje mit Spiekeroog analysiert. Zur weiteren DurchfĂĽhrung von F&E Aufgaben im Rahmen kĂĽstenschutzrelevanter Aufgabenstellungen, insbesondere der Ăśbertragbarkeitsanalyse der im GeoWAM Projekt entwickelten Verfahren, hat DLR-HR im April 2022 weitere Gebiete an den Inseln Langeoog und Baltrum beflogen. Die bedarfs- und nutzergerechte Datenprozessierung der am 20. und 21. April 2022 durchgefĂĽhrten F-SAR Befliegung und die Beschreibung der errechneten Datenprodukte ist Gegenstand dieses technischen Berichts

    Bistatic Experiment Using TerraSAR-X and DLR’s new F-SAR System

    Get PDF
    A bistatic X-band experiment was successfully performed early November 2007. TerraSAR-X was used as transmitter and DLR’s new airborne radar system F-SAR, which was programmed to acquire data in a quasi-continuous mode to avoid echo window synchronization issues, was used as bistatic receiver. Precise phase and time referencing between both systems, which is essential for obtaining high resolution SAR images, was derived during the bistatic processing. Hardware setup and performance analyses of the bistatic configuration are pre-sented together with first processing results that verify the predicted synchronization and imaging performance
    • …
    corecore